40th Biannual session of ICAR, Puerto Varas Chile, 24-28 Oct 2016

THE GLOBAL STANDARD FOR LIVESTOCK DATA

Network. Guidelines. Certification.

OptiMIR: Use of MIR spectra to predict multiple cow status as advisory tools for dairy farms

Grelet.C¹, Gengler.N², Bastin.C³, Vanlierde.A¹, Smith.S⁴, Gelé.M⁵, Soyeurt.H², Massart.X⁶, Dardenne.P¹, <u>Dehareng.F¹</u>

¹ CRA-W, Gembloux, Belgium
² ULG, GxABT, Gembloux, Belgium
³ AWE, Ciney, Belgium
⁴ SRUC, Edinburgh, United Kingdom
⁵ IDELE, Angers, France
⁶ EMR, Ciney, Belgium

•Position of the peaks \rightarrow Qualitative analysis

Intensity of the peaks → Quantitative analysis

CAR

Network. Guidelines. Certification.

Innovative view of OptiMIR

Prediction tools fast, cheap, via milk control organisations

Information on : - feeding

- (acidosis, ketosis, energy balance...)
- health (mastitis...)
- environmental impact (methane...)
- fertility (pregnancy...)

4

Development of new tools

Network. Guidelines. Certification.

OptiMir network

ICAR

Network. Guidelines. Certification.

OptiMir network

ICAR

Network. Guidelines. Certification.

CAR

- -Harmonize the spectral format
- -Allow merging of data
- -Creation of common models

Network. Guidelines. Certification.

OptiMIR models

Grelet.C, Gengler.N, Bastin.C, Vanlierde.A, Smith.S, Gelé.M, Soyeurt.H, Massart.X, Dardenne.P, Dehareng.F

ave

EMR

SRUC

Gembloux Agro-Bio Tech Université de Liège

Negative energy balance – milk biomarker

Network. Guidelines. Certification.

Bjerre-Harpoth (2012) : Induced nutrient restriction

<u>Citrate</u> in milk as early indicator of physiological imbalance

• Statistics for citrate model (PLS)

Item	Ν	No. of LV	No. of Outliers	Min	Max	Mean	SD	RMSE	R ²	RPD
Sodium citrate (mmol/I	L)									
Cross-validation	380	9	2	3.88	16.12	9.03	2.26	0.7	0.9	3.21
Validation	126	-	-	4.44	15.16	9.08	2.03	0.76	0.86	2.96

Allows screening,

quantitative information

Data :

- 526,509 daily records
- 962 cows were available from
- France and the UK

Data treatment

- Spectra standardized
- Smoothed data (S.Denholm 2015)
- PLS regression

		Innovate UK Technology Strategy Board	
	R ² cv	R ² cv	
Energy Balance (MJ/d)		0.58	
Energy Intake (MJ/d)		0.48	
	S.Smith, 2015	S.Smith, 2016, personal cor	nmunicatio

BHB and Acetone in milk known as biomarkers (Enjalbert et al., 2001)

• Statistics for milk BHB model (PLS)

Item	Ν	No. of LV	No. of Outliers	Min	Max	Mean	SD	RMSE	R ²	RPD
BHB (mmol/L)										
Cross-validation	325	8	7	0.045	1.596	0.235	0.193	0.109	0.71	1.77
Validation	108	-	-	0.058	0.755	0.204	0.136	0.083	0.63	2.36

4 farms in France and Germany 1124 collected phenotypes on 214 cows

THE GLOBAL STANDARD

FOR LIVESTOCK DATA

Prediction of the level of ketosis risk •

 High risk: blood BHB>1.2 mmol/L or NEFA>0.8

versus

• Low risk

Results on cross validation (n=566)

Sensitivi	ty = 84,5 %	Prediction					
Specifici	ty = 84,2 %	Negative	Positive				
Observation	Low risk	(234)	44				
Observation	High risk	43	(235)				

M.Gelé, 2015

15

Other models

- Fatty acids profile (32 FA and groups of FA)
 - 1827 milk samples
 - 6 countries
 - 17 breeds
- Soyeurt et al. 2011 J. Dairy Sci. 94: 1657-67 & Bastin et al. 2011 J Dairy Sci. 94: 4152-63

- Minerals in milk
 - 1181 samples
 - 4 countries

Soyeurt et al. 2009 J. Dairy Sci. 92: 2444–54 & Soyeurt et al. 2012 EAAP 63rd Annual meeting, 17

• Methane

THE GLOBAL STANDARD

FOR LIVESTOCK DATA

- SF6 and respiratory chambers
- 7 countries

Vanlierde et al. 2015 J. Dairy Sci. 98 : 5740-47 & Vanrobays et al. 2016 J. Dairy Sci. 99 : 7247-60

Network. Guidelines. Certification.

Use on field

Grelet.C, Gengler.N, Bastin.C, Vanlierde.A, Smith.S, Gelé.M, Soyeurt.H, Massart.X, Dardenne.P, Dehareng.F

EMR

Gembloux Agro-Bio Tech Université de Liège

SRUC

17

Use of new tools on field

Network. Guidelines. Certification.

CAR

Ketosis tool developed by AWE (BE)

- Walloon breeding association (AWE) tool using models developed in Optimir project
- Global Ketosis index tool: Combination of BHB, acetone predictions and fat/protein ratio
- Relative approach for each biomarker: Cow value compared to population values at same DIM

6

5

Ketosis tool developed by AWE (BE)

• Global score from 0 to 6 as a global indication for ketosis status

2

3

4

• Currently in test in 75 farms

O

• Good feedback from cattle breeders

Conclusion

✓ Creation of Standardization procedure

- Network of 83 MIR instruments currently standardized in routine
- Creation of common spectral data base
- Possible to use all existing and future models on all instruments
- ✓ Creation of new models
 - e.g.
 - Prediction of Negative energy balance
 - Prediction of ketosis risk

✓ Upgrade of existing models : Methane, fatty acids, minerals, ...

Creation of - Creation of - Creation of C

21

Thank to all our partners

